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In addition to the forces to which a particle is exposed in the centrifugal field

(centrifugal force, buoyancy, friction), it is also subject to undirected and

directed (mutual) diffusion. Undirected diffusion due to Brownian motion is

the subordinated process compared to diffusion caused by the concentration

gradient at the sedimentation boundary. The latter leads to a broadening of

the sedimentation boundary, mimicking a broader s distribution.

Fig. 1 shows diffusion in the course of time. The left figure shows the

differential distribution of a monomodal species in the cell radius domain.

The scans registered at different time points were superimposed for better

comparability; in reality, the distribution’s center moves to the cell bottom,

i. e. to the right. The right figure shows the data converted into the s-domain.

The essential information of Fig. 1 lies in the scans’ order: In the cell radius

domain, the distribution is initially narrow and widens as time progresses. In

the s domain, the distribution is initially broad and becomes narrower with

time. This shows that sedimentation outweighs diffusion, as will be described

in more detail in the following section.

Figure 1: Diffusion broadening in the course of a sedimentation velocity

experiments. Raw data (cell radius domain, left panel) and transformed s

distributions (s domain, right panel).
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For certain experiments, it may be necessary to take the effect of diffusion

into account. In principle, two courses of action exist:

� Diffusion can be experimentally suppressed, typically by high rotational

speeds and short experimental duration.

� Diffusion can be eliminated during evaluation, requiring assumptions

to be made.

However, the effect of diffusion broadening can also be utilized to determine

diffusion coefficients. For this purpose, classical and more modern variants

exist, which are discussed comprehensively in the article on diffusion broaden-

ing. This article is limited to the theoretical description of the phenomenon.

However, it should already be noted at this point that alternative methods

for the measurement of diffusion coefficients are more accurate and easier

to apply (dynamic light scattering, field flow fractionation). Under certain

circumstances, however, analytical ultracentrifugation can also be useful in

this respect.

Impact of diffusion onto sedimentation coefficient dis-

tributions

Mutual diffusion of one particle species along a spatial coordinate x is de-

scribed by Ficks 2nd law, according to which the temporal change of its

concentration ci depends on its diffusion coefficient D and the concentration

gradient:(
∂ci
∂t

)
x

= D

(
∂2ci
∂x2

)
(1)

The index i refers to the solvent or solute in question. The equation assumes

that the diffusion coefficient is independent of the location; an approximation

that is often not applicable. From the solution of this differential equation,

the mean pathlength x̄ which a particle with the diffusion coefficient D has

traveled after t seconds is accessible:

x̄ =
√
〈x2〉 =

√∫ ∞
0

c2
c02

x2 dx =
√

2D t (2)
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where c2 is the concentration of the solute at time t and c02 at time t = 0

at location x. In a first approximation, the distance a particle has covered

out of the sedimentation boundary due to diffusion depends on the square

root of time. In contrast, sedimentation velocity is directly proportional to

time. Thus, for large t, sedimentation overcomes diffusion. After infinite

running time in an infinitely long measuring cell, the width of a sedimentation

coefficient distribution would represent polydispersity alone.

In reality, however, the Ficks 2nd law must be generalized such that the

diffusion coefficient is not assumed to be independent of concentration. This

results in the expression:(
∂ci
∂t

)
x

=
∂

∂x

(
D
∂ci
∂x

)
(3)

The fundamental equation of ultracentrifugation, Lamms differential equa-

tion, takes the local dependence of the transport processes into account and

links diffusion and sedimentation. The radial position r is used as the spatial

coordinate:

∂c

∂t
=

1

r

∂

∂r

[
r ·D ∂c

∂r
− s ω2 r2 c

]
(4)

In the Lamm equation, the different dependencies of sedimentation and dif-

fusion on time are not apparent; moreover, there are no constant solutions.

Numerous attempts have been made to find manageable solutions for the

Lamm equation. A common approximation was suggested by Fujita:

c2 (r, t) =
c02 e

−τ

2
·
[
1− Φ

(
τ − z
2
√
ετ

)]
(5)

with the abbreviations

τ = sω2t; z = 2 ln
r

rm
; ε =

2D

sω2r2m
(6)

It gives the particles’ concentration c2 at a given time t and a given cell

radius r as a function of the sedimentation coefficient s, the diffusion coef-

ficient D, the meniscus position rm, the angular velocity ω and the initial

concentration c02. Φ(x) is the Gaussian error function, which well resembles

the sedimentation boundary’s shape.

It turns out useful to introduce a relative concentration w with values between

0 and 1, indicating the mass-weighted fraction of the plateau concentration
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at the respective point of the sedimentation boundary. Such, w, usually

normalized to 1, corresponds to the function value of the G(s) function,

which is introduced in the article on sedimentation velocity.

If s∗w is defined as the apparent sedimentation coefficient at the relative con-

centration w, diffusion broadening can be described by the inverse error func-

tion Φ−1(x):

s∗w = s− 2
√
D

rmω2
· Φ−1 (1− 2w) · 1√

t
(7)

Equation (7) shows:

� that the sedimentation boundary will not change at w = 0.5,

� that the impact of diffusion grows towards the upper and lower plateau,

� that the impact of diffusion grows with increasing angular velocity,

� that diffusion broadening is reciprocal to the square root of runtime,

� that diffusion broadening is proportional to the square root of the dif-

fusion coefficient.

As said before, eq. (7) can serve two purposes:

� It can be used to eliminate diffusion broadening from s distributions.

� It can be used to calculate diffusion coefficients from diffusion broad-

ening.

The second aspect is discussed in the article on diffusion broadening. Table 1

shows diffusion broadening calculated for the sedimentation of a polystyrene

latex with a diameter of 50 nm (i. e., with a relatively small diffusion coeffi-

cient!) in water (s = 83 S) at different rotational speeds.
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Drehzahl [rpm] t [s] ∆s [S] ∆s [%]

1000 1,69 * 106 43,9 53

3000 1,88 * 105 14,6 18

10000 1,69 * 104 4,4 5

30000 1880 1,5 2

50000 677 0,9 1

Table 1: Diffusion broadening at w = 0.2 and 0.8 depending on angular

velocity, after displacement of the sedimentation boundary by one cm. t is

the time required for this distance. The table shows diffusion broadening to

multiply at low angular velocities.

The example shows that s distributions can be considerably distorted by

diffusion broadening. The mean sedimentation coefficient is correctly de-

termined, but not the distribution. However, the entire distributions are

of interest, taken to be too broad if not corrected for the contribution of

diffusion.

Experimentally, diffusion broadening can be can be minimized by keeping

runtimes short and rotational speeds high. However, this is not always possi-

ble, depending on the system. In this case, the data must be evaluated using

an estimated diffusion coefficient according to eq. (7). A rough estimate can

be sufficient for this purpose.

Nanolytics Page 5


